Hybrid Orbitals (Sections 2.4, 2.6); π bonding (Section 2.3)

$1s + 3p \rightarrow 4 sp^3$ hybrids	109°
$1s + 2p (+ 1 \text{ unhybridized p}) \rightarrow 3 \text{ sp}^2 \text{ hybrids } (+ 1 \text{ unhybridized p})$	120°
$1s + 1p (+ 2 \text{ unhybridized p's}) \rightarrow 2 \text{ sp hybrids } (+ 2 \text{ unhybridized p's})$	180°

Why does hybridization occur?

- Hybrid orbitals are big and point in one direction. Their <u>directionality</u> leads to <u>better</u> <u>overlap</u> which leads to <u>strong bonds</u>.
- Hybrid orbitals leads to nice VSEPR angles

If hybridization is so great, why aren't pure monatomic atoms hybridized?

- For an isolated atom, having 1 s and 3 p atomic orbitals is better than 4 sp³ hybrid orbitals
- However, when covalent bonds can result, the small price of hybridizing is paid off a thousandfold by the payoff of making strong, good VSEPR bonds

If hybridization is so great, why aren't all carbons sp³ hybridized? Why do some stay sp² or sp, and withhold some p orbitals from hybridization?

- p orbitals are withheld from hybridization for the sole purpose of using them to make π bonds.
- Only when double bonds or triple bonds are involved is the hybridization less than the full sp³
- Each π bond requires the attached atoms to use p orbitals

2 Kinds of Covalent Bonds

- sigma (σ) bonds: electron density is along the axis between the nuclei
 σ bonds always involve the overlap of s or s-containing hybrids (s, sp, sp², sp³)
- pi (π) bonds: electron density is either above/below or before/behind, but not along the internuclear axis
 - π bonds involve the overlap of parallel p orbitals

The first bond in any bond (whether single, double, or triple), is a σ bond. The "extra" bonds in a double or triple bond are π bonds.

Bond	σ	π
Single	1	0
Double	1	1
Triple	1	2

 π bonds are weaker and more reactive than σ bonds. Most organic reactions involve π bonds

Classification of Isomers (2.7-2.8)

isomers-different compounds with the same molecular formula.

structural isomers (or constitutional isomers)-isomers that have their atoms connected in a different order.

stereoisomers (or configurational isomers)-isomers in which atoms are joined in the same order but differ in the way their atoms are arranged in space.

- Stereoisomers have the same condensed formula (if not, they aren't stereoisomers)
- Stereoisomers can not be interconverted by bond rotation or by being turned over
- If two things can be interconverted by bond rotation or being turned over, then they aren't stereoisomers!
- Stereoisomers are subdivided into two categories: **enantiomers** and **diastereomers**.
 - o **Diastereomers**: have **cis/trans** relationship

$$H_{Br}$$
 H_{Br}
 H

o <u>Enantiomers</u>: have <u>mirror image</u> (left hand/right hand) relationship

Problem: For the following pairs of structures, classify whether they are related as **same**, **structural isomers**, or **stereoisomers**.

2.9 Polarity

-molecular dipole: vector sum of bond and lone-pair dipoles

A simple molecule is totally nonpolar only if:

- 1. Central atom has no lone pairs
- 2. All attached atoms are the same

Practical:

- Lone pairs and O-H or N-H bonds usually dominate
- C-C, C-H, and C-halogen bonds are practically nonpolar or at best only weakly polar

Problems: Classify as totally nonpolar or polar.

a. CO₂

b. CCl₄

c. CH₄

d. C_4H_{10}

Nonpolar

Nonpolar

Nonpolar

Nonpolar

e. H₂O

f. NH₃

g. CH₃CH₂OH

h. CHCl₃

Polar

Polar

Polar

Weakly Polar

2.10 Intermolecular Forces and Boiling Points

- 1. Hydrogen bonds (O-H or N-H)
- 2. Dipole-Dipole
 - Much weaker than hydrogen bonds
- 3. London Forces
 - Increases with increasing molecular weight

Intermolecular Forces impact:

- 1. Boiling points and melting points
- 2. Solubility

For Boiling Points:

- 1. If weight is about equal \rightarrow H-bonder > polar > nonpolar
- 2. If H-bonding/polarity is comparable: high mw > lower mw

Problem: Rank the boiling points, 1 being highest

2.11 Polarity and Solubility

2 Practical Rules:

- 1. The more N's or O's in a molecular, the greater it's water solubility
- 2. The more C's, the lower it's water solubility

Facts/Theory

- 1. "Like dissolves like"
 - enthalpy and entropy factors

Good solubility

- a. Polar solvent-polar solute
- b. Nonpolar solvent-nonpolar solute

Bad solubility

- a. Polar solvent-nonpolar solute
- b. Nonpolar solvent-polar solute

- 2. Water is very polar
- 3. Any molecules with N or O can H-bond with water (even if it can't necessarily H-bond itself) (Rule 1)
- 4. Adding C's adds C-C, C-H nonpolar bonds → reduces water solubility (Rule 2)
- 5. Hydrocarbons and halocarbons are insoluble in water
 - Many other organics have low solubility in water
 - Depends on the ratio of nonpolar/polar, N or O to C

Problems: Circle the more water soluble of the following pairs:

3. OH
$$0$$

Problem: Box the higher boiling in each pair. Does water solubility and boiling point always correspond? Why or why not?

- Not always, many factors are the same (H-bonding, polarity raises both.
- But extra C's is good for boiling point but bad for water solubility)
- 1 2

Twelve To Remember: The Functional Groups

0. Alkane -all single bonds -no heteroatoms

1. Alkene -C=C double bond

2. Alkyne -triple bond Tip: A-E-I so alkane, alkene, alkyne

Br (CI, I, F)

3. Arene -alternating double bonds in a 6-carbon ring

- 5. Alcohol
- -oxygen
- -OH
- -single bonds

- 7. Aldehyde
- -oxygen
- -C=O double bond
- -one H connected to C=O

- 9. (Carboxylic) Acid
- -2 oxygens
- -C=O double bond, with
- O-H directly attached

11. Amide

- -one nitrogen, one C=O -C=O double bond, with N directly attached
- -"D" for C=O double bond

- 6. Ether
- -oxygen
- -no OH
- -single bonds

- 8. Ketone
- -oxygen
- -C=O double bond
- -two C's connected to C=O

Alcohols and Ethers Can be Seen as H₂O Derivatives: Oxygen Molecules With Single Bonds Only Tip: A before E

Aldehydes and Ketones Have C=O (Carbonyl) **Double Bonds** Tip: A before kEy; Aldehyde has less C's attached to C=O

- 10. Ester
- -2 oxygens
- -C=O double bond, with
- O-C directly attached

- 12. Ami<u>n</u>e
- -one nitrogen, no C=O
- -"N" for No C=O double bond

A(cid) before E(ster)

N compounds

The Functional Groups, R-Z

The Functional Groups, R-Z		Suffin (on Dustin) Head in		
Functional Group Z	Name	Suffix (or Prefix) Used in Systematic Name	Nomenclature Review	
-R	Alkane	-ane	methan- 1C	
	Alkene	-ene	ethan- 2C propan- 3C butan- 4C pentan- 5C hexan- 6C	
—c==c—	Alkyne	-yne	heptan- 7C octan- 8C nonan- 9C decan- 10C	
	Arene	not responsible	decan- 10C	
-X (Cl, Br, I, or F)	Haloalkane	halo-		
-ОН	Alcohol	-ol		
-OR	Ether	not responsible		
H	Aldehyde	-al		
R	Ketone	-one		
ОН	Carboxylic Acid	-oic acid		
OR	Ester	-oate		
NH ₂	Amide	-amide		
-NH ₂	Amine	amino-		

ALKANE NAMES (Memorize) (Sections 3.2)

# C's	Name	Formula	Bp (°C)	Structure
1	Methane	CH ₄	-162	H-(CH ₂)-H
2	Ethane	C_2H_6	-89	H-(CH ₂) ₂ -H
3	Propane	C_3H_8	-42	H-(CH ₂) ₃ -H
4	Butane	C_4H_{10}	0	H-(CH ₂) ₄ -H
5	Pentane	C_5H_{12}	36	H-(CH ₂) ₅ -H
6	Hexane	C_6H_{14}	69	H-(CH ₂) ₆ -H
7	Heptane	C_7H_{16}	98	H-(CH ₂) ₇ -H
8	Octane	C_8H_{18}	126	H-(CH ₂) ₈ -H
9	Nonane	C_9H_{20}	151	H-(CH ₂) ₉ -H
10	Octane	$C_{10}H_{22}$	174	H-(CH ₂) ₁₀ -H

Industrial Alkanes (Sections 3.5)

Name	# C's	Boiling Range	Use
Natural Gas	C_1 - C_3	Gas	Fuel
	(70% methane)		
"Petroleum Gas"	C_2 - C_4	<30°	Heating, Gas
Propane	C_3	-42°	Propane tanks,
			camping, etc.
Gasoline	C_4 - C_9	30-180°	Car fuel
Kerosene	C_{8} - C_{16}	160-230°	Jet fuel
Diesel	C_{10} - C_{18}	200-320°	Truck fuel
Heavy Oils	C_{16} - C_{30}	300-450°	
Motor Oils		High temp	
Paraffin		Vacuum	
Asphalt		Never Distills	
Coke		Never Distills	

Nomenclature of Alkanes (Sections 3.3)

Systematic IUPAC Rules for Branched and Substituted Alkanes (Section 3.3B)

- 1. Longest continuous C-chain → "core name"
- 2. Number core chain from an end nearest a substituent
- 3. Name substituents as "alkyl" groups:
- 4. Specify the location of substituents using numbers (hyphenate the #'s)
 - If >2 substituents, list alphabetically
 - Use di-, tri-, tetra- if the same substituent is repeated. (But ignore these in alphabetizing).

Punctuation Notes:

- Hyphenate numbers
- Do not put a space between substituents and the core name

Special Names for Some 3 or 4-carbon Substituents

Another Classification System

Primary (1°): with one attached carbon Secondary (2°): with two attached carbons Tertiary (3°): with three attached carbons

$$C \stackrel{\mathsf{H}}{\leftarrow} 1^{\circ} \qquad C \stackrel{\mathsf{C}}{\leftarrow} 1^{\circ} \qquad C \stackrel{\mathsf{C$$

Very Complex Substituents (Not responsible)

Nomenclature Example Problems (Sections 3.5)

1.

2-methylhexane

4-ethyloctane

4-ethyl-3-methylheptane

3,5-diethyloctane

error

6.

4-isopropylheptane

7.

4-t-butyloctane

Butylbenzene

Structural Isomer Problems

- <u>Check formula first</u>. Is it an acyclic molecule, or not? (Cyclic alkane or an alkene or something...)
- <u>Be systematic</u>. Try the longest possible chain (or largest ring size) first, then systematically shorten it and find the branched isomers.
- Avoid duplicates!
- Beware of things that look different but are really the same thing.
- 1. Draw all structural isomers of C₇H₁₆. (Be systematic; no duplicates!)

Formula proves acyclic alkane

$$\begin{cases} 7 \\ \downarrow \\ \\ \\ \end{cases}$$

2. Draw all structural isomers of C₇H₁₄. (Be systematic; no duplicates!)

Formula proves either a cyclic alkane or an alkene. In addition to the 27 cycloalkanes shown, there are at least another couple dozen alkenes. Notice that these are 27 cycloalkane structure isomers; many of them could also have cis/trans issues, so where I drew just one, you could perhaps actually draw both a cis version and a trans version.

